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Abstract-The problem of a plane strain crack lying along the interface between an elastic­
plastic power-law hardening material and a rigid substrate is analysed in detail. The possibility of
elastoplastic asymptotic crack tip solutions that are separable in rand 8 is explored, where (r,8)
are polar coordinates at the crack tip. It is found that such variable-separable solutions do exist,
and the first two terms in the asymptotic expansion of the stress and displacement fields in the near­
tip region are obtained. It is shown that both the first and the second terms in the stress expansion
are singular in r as r ..... O. The asymptotic solution is studied in detail for values of the hardening
exponent n near n = I via a small perturbation of the governing equations about the linear problem;
it is shown that the leading and second order singular terms in the stress expansion branch from
the mode-I and mode-II linear elastic solutions respectively. The predictions of the asymptotic
solution are compared with the results of detailed finite element calculations, The region of domi­
nance of the asymptotic solution is found to depend strongly on the geometry of the structure
considered and the type of the applied loading.

1. INTRODUCTION

The problem of interfacial fracture has received a lot of attention recently and numerous
publications addressing the mechanics of it have appeared in the literature. The elastic
interface crack problem is now well understood and a complete bibliography on the subject
can be found in the review articles by Rice (1988), Comninou (1990), Hutchinson (1990),
Shih (1991) and Hutchinson and Suo (1992). However, several aspects of the elastic-plastic
problem are not as clear yet and a few conflicting solutions have been published. Yuli Gao
and Zhiwen Lou (1990) considered the problem of a plane strain crack lying along the
interface of two elastic-plastic power-law hardening materials and presented asymptotic
solutions in which the near tip stress and deformation fields are separable functions in r
and 8, (r,8) being polar coordinates at the crack tip; their asymptotic solutions involve two
arbitrary constants, so that the near tip mode-mix (ratio of opening to shearing stresses on
the interface) can be arbitrary. The same problem was also analysed by Wang (1990) and
Champion and Atkinson (1991) who presented asymptotic solutions different from those
of Yuli Gao and Zhiwen Lou; these solutions are also variable-separable as r ~ 0, but
involve only one arbitrary multiplicative constant, so that the near tip mode-mix is com­
pletely defined by the asymptotic solution in terms of the larger hardening exponent of the
two power-law hardening materials. A variable-separable elastoplastic asymptotic solution
for the interface crack in anti-plane shear has been developed by Champion and Atkinson
(1990). Numerical solutions to the elastoplastic interface crack problem have been presented
by Shih and Asaro (1988, 1989, 1991) who carried out detailed finite element calculations
for different specimen geometries and loading conditions. The problem of the interface
crack along the interface between an elastic-perfectly-plastic material and a rigid substrate
has been analysed by Quanxin Guo and Keer (1990) and Zywicz and Parks (1992) who
presented several possible slip line fields for the near crack tip region.

The question of near tip material interpenetration and possible contact of the crack
faces has been addressed by Zywicz and Parks (1990), who developed a slip line field
solution for a perfectly plastic material, and by Aravas and Sharma (1991), who used a
power-law hardening material model and obtained asymptotic elastoplastic solutions for
the interface crack with contact zones.
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A thorough analysis of the plane strain elastoplastic interfacial crack problem is
presented herein. The crack lies along the interface between an elastoplastic continuum and
a rigid substrate and the crack faces are assumed to be traction free (open crack). J 2­

deformation theory with power-law hardening is used to describe the constitutive behavior
of the materials involved. We attempt an asymptotic expansion of the stress field a of the
form

(1)

where a(O) and a(l) are normalized angular functions, s < t < .. ',Jis the J-integral, and Q
is a parameter that controls the magnitude of the second term and depends on the type and
magnitude of the applied loads as well as on the geometry under consideration. Both the
leading and the second order terms in eqn (1) are determined. Our results for the leading
term a(O) agree with those of Wang (1990) and Champion and Atkinson (1991); we have
been unable, however, to reproduce the solutions ofYuli Gao and Zhiwen Lou (1990). In
the above asymptotic expansion of the near tip stresses s = -l/(n+ 1), and the second
exponent t is also negative, i.e. s < t < 0, for all values of the hardening exponent n.

The leading order solution involves only one multiplicative constant, the J-integral,
and the ratio O"WMZ) on the interface is completely defined by the asymptotic solution for
a given value of the hardening exponent. It is found that the leading order solution a(O)

corresponds to a dominating tensile mode ahead of the crack for all values of the hardening
exponent n. This result appears, at first, to be unexpected, since the corresponding asymp­
totic solution for an incompressible linear elastic material (n = 1) contains two arbitrary
constants, thus admitting an arbitrary mode-mix. However, Champion and Atkinson
(1991), using a small perturbation technique, were able to show analytically that, for values
of n slightly larger than I, the resulting non-linear eigenvalue problem that defines a(O) has
only one independent eigensolution, which branches from the mode-I solution as n increases
from 1 and uniquely defines the near tip mode-mix in terms of n. The source of the discrete­
ness of the asymptotic mode-mix is discussed thoroughly in a recent article by Bose and
Ponte Castaneda (1992), who list several "degenerate" (arbitrary mode-mix) and "non­
degenerate" (fixed mode-mix) eigenvalue problems in the mechanics of stationary and
propagating cracks. It should also be noted that, even in the context of linear elasticity, it
is possible to have asymptotic crack tip solutions in which the mode-mix is completely
defined by the asymptotic solution itself; an example of this is presented in Section 2 below.

The second order solution in (1) is singular in r, i.e. t < 0, and a(1) has a substantial
shearing component ahead of the crack. In Section 4, we study the behavior of the second
term in the stress expansion (1) via a small perturbation of n about n = 1, and show
analytically that a(l)(8) branches from the mode-II linear elastic solution. It is also shown
that in weakly non-linear materials (say n = 1+(, ( = small), the difference between the
two stress exponents sand t is of order (2, i.e. t = S+O((2) near n = 1. A practical
implication of this is that, for finite (but small) values of r, the second term in the stress
expansion becomes important and does affect the near tip mode-mix. Put in other words,
the value of the ratio (0"00/0",0)0=0 near the crack tip depends on both J and Q. Therefore,
J and Q can be viewed as the non-linear counterparts of the mode-I and mode-II stress
intensity factors of the linear elastic solution.

The predictions of the developed elastoplastic asymptotic solutions are compared with
the results of detailed finite element calculations under small- as well as large-scale-yielding
conditions. The region of dominance of the elastoplastic asymptotic solution is found to
depend strongly on the magnitude and type of applied loading as well as on the geometry
considered.

2. TWO LINEAR ELASTIC SOLUTIONS

In this section, we demonstrate, by means of two simple problems, that in the context
of linear elasticity the near tip mode-mix mayor may not be determined by the asymptotic
solution alone, depending on the problem under consideration.
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We consider two different models for the near tip region of a plane strain interfacial
crack along a rigid substrate, where perfect bonding is assumed for the attached part of the
interface: (i) the traditional open crack tip model as formulated by Williams (1959), and
(ii) Comninou's (1977) closed crack-tip model, in which the crack surfaces are assumed to
be in frictionless contact near the tip.

The linear elastic solution of the first problem is known to be non-separable in rand
0, unless the material is incompressible. In order to simplify the solution, we assume that
Poisson's ratio is indeed equal to 0.5. In such a case, the near tip solution is of the form of
eqn (1), where the leading order exponent s and the angular function 0'(0) are determined
from the solution of a linear eigenvalue problem. It can be readily shown that the leading
eigenvalue is s = -1/2, and that there are two linearly independent eigenfunctions cor­
responding to the mode-I and mode-II solutions respectively. In view of the linearity of the
problem, the general leading order solution is found to be (Erdogan, 1963; Salganik, 1963;
England, 1965; Rice and Sih, t965)

(1xx = 4~ [K,(3 cos ~ +cos 5:)+Ku( -7 sin ~ -sin 5:)1 (2)

(1yy = 4~ [K1(5 cos ~ -cos 5:)+Ku( -sin~ + sin 5:)1 (3)

and

1 [ ( . ° . 50) ( ° 50)]
(1xy = 4~ K, - sm "2 + sm 2 + Ku 3 cos "2 + cos 2 ' (4)

where the crack-tip coordinate system shown in Fig. I is used. Equations (2)-(4) show that
the asymptotic solution involves two arbitrary constants, K, and Ku, so that the near tip
mode-mix cannot be defined by the asymptotic solution alone.

We tum next to Comninou's model and relax the incompressibility assumption. Again,
sand 0'(0) are determined from the solution ofan eigenvalue problem. The leading eigenvalue
is s = -1/2; in this case, however, there is only one independent eigenfunction, and the
leading order solution can be written as

(5)

(6)

and

y

Fig. I. Schematic representation of the crack-tip region.
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K~l 1 I 8 S8]
ax, = j2;;; 2-(K+ 1) L(2K + 1) cos 2 + cosi ' (7)

where K = 3 -4v for plane strain. The near tip mode-mix is determined by the asymptotic
solution itself; in fact, the asymptotic solution is mode-II-like, in the sense that the shear
stress is the only singular stress component along the interface as r -+ O.

3. ASYMPTOTIC VARIABLE-SEPARABLE ELASTOPLASTIC SOLUTIONS

We consider the plane strain problem of a crack lying along the interface of a homo­
geneous medium and a rigid substrate. The crack face is assumed to be traction free. The
constitutive behavior of the deformable medium is characterized by the J 2 deformation
theory for a Ramberg-Osgood uniaxial stress-strain behavior, namely

( = l_±v 5+ 1=_~~ a 6+ 3rJ.E (?c)n 1 Sij
1/ E' IJ 3E kk 1/ 2 0 a 0 a 0 '

(8)

where £ is the infinitesimal strain tensor, s is the stress deviator, 6ij is the Kronecker delta,
E is Young's modulus, v is Poisson's ratio, rJ. is a material constant, n is the hardening
exponent (1 ,;;; n';;; 00), ao is the yield stress, [0 = ao/E and a c is the von Mises equivalent
stress defined as a e = (1. SSijsij) 1/2.

Under plane strain conditions, the non-zero stress, strain and displacement components
are am aee, ar(j, a::, [m E(i!), [,.0, Ur and Uo, where rand 8 are crack-tip polar coordinates as
shown in Fig. 1, and z is the coordinate axis normal to the plane of deformation.

The boundary conditions for the asymptotic problem are (see Fig. 1)

ur(r,O) = 0, ue(r,O) = 0 as r -+ 0,

aoo(r, n) = 0, aro(r, n) = 0 as r -+ O.

(9)

(10)

The asymptotic solution is obtained using the technique developed recently by Sharma
and Aravas (199Ia), which is outlined briefly in the following. The problem is formulated
in terms of fundamental quantities, namely stresses and displacements, and an asymptotic
expansion of the form of eqn (I) is attempted. Using a J-integral argument similar to that
used by Hutchinson (1968) and Rice and Rosengren (1968), we conclude that
S = -l/(n+ 1). For the purposes of clarity, the stress expansion is rewritten as

(11 )

where J is the J-integral, and Q is a dimensionless constant that controls the magnitude of the
second stress term. It can be readily shown that the corresponding displacement expansion is
of the form (Sharma and Aravas, 1991a)

provided that t < (n-2)/(n+ 1). In the above equations, In is defined as
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I = in [_n_ 0'(0)"+ 1 COS e-n.O'(O) (_1_ illO) cos e- dilJO) sin e)J de (13)
n Jo n+ 1 e I IJ n+1 J de '

where nj = cos e, n2 = sin eand the components O'l? and mOl are understood to be Cartesian
(versus polar).

The expansions (II) and (12) are then substituted into the governing equations of
equilibrium and the stress-strain relation (8) ; terms having like powers of r are collected,
and a hierarchy of problems is obtained. The leading order problem that defines tirO) and
u(O) consists ofa set offive non-linear ordinary differential equations; the next order problem
is a linear eigenvalue problem that defines the second stress exponent t and the eigen­
functions ti(l) and u(l). The leading as well as the second order problems are solved numeri­
cally for different values of the hardening exponent using a one-dimensional Galerkin­
finite-element technique. More details on the formulation and the computations are reported
in Sharma and Aravas (1991a) and will not be repeated here.

The angular variations of the leading order in-plane stress and displacement com­
ponents for n = 5, 10 and 50 are shown in Fig. 2. The solutions are normalized so that
(1.5sljO) S&O)';;;x = I, and ilbO)(n) < 0 (open crack). The solutions obtained agree well with
those reported by Wang (1990) and Champion and Atkinson (1991). The stress distribution
for n = 50 closely approximates one of the slip line fields developed by Zywicz and Parks
(1992) shown in Fig. 3.

The dependence of In on the hardening exponent n is shown in Fig. 4.
The solutions shown in Fig. 2 are obtained by solving the leading order system of the

homogeneous non-linear differential equations, as described by Sharma and Aravas (1991a),
together with the boundary conditions (9) and (10), without specifying the mode-mix ahead
of the crack. Put in other words, the asymptotic solutions obtained involve only one arbitrary
constant (the J-integral). This contrasts with the asymptotic elastoplastic crack tip solutions
in homogeneous media, where two arbitrary constants are involved, thus admitting an
arbitrary mode-mix ahead of the crack (Shih, 1974). It should be noted that we did try to
develop solutions with an arbitrary mode-mix for the interface crack problem by assigning
arbitrary values to the ratio O'b~) IO'~g) on (} = 0, in addition to the boundary conditions (9)
and (10); in that case, however, the Newton-Raphson method used for the solution of the
discretized form of the leading order system of equations failed to converge and we were
unable to obtain any solutions. In this connection, we mention that the two-constant
(arbitrary mode-mix) solutions presented by Yuli Gao and Zhiwen Lou (1990) are ques­
tionable, since they violate the condition O'~~) = O'b~) on (} = 0, which results from the fact
that Err = 0 along the interface.

The angular variation of the second order stress and displacement components for
n = 5, 10 and 50 are shown in Fig. 5. The solutions are normalized so that (1.5sl)lsU)';;;x = I,
and ilb1)(n) < O.

The variation of the two stress components (s, t) with the hardening exponent n is
shown in Fig. 6. The values of the second stress exponent t are listed in Table 1 for integer
values of the hardening exponent n in the region 2 ~ n ~ 20. It should be noted that tis
negative for all values of n and close to the leading order exponent s = - 1I(n + I), i.e. both
the first and the second term in the stress expansion (II) are singular as r --+ O. This indicates
that the contribution of the second term on the right hand side of (II) is important even
for small values of r. For the representative values of n = 3, 5 and 10 the corresponding
exponents are

and

n = 3,

n = 5,

s = -0.250,

s = -0.167,

t = -0.212,

t= -0.113,

n = 10, s = -0.091, t = -0.037.

Notice that the first decimal point in sand t is the same for all values of the hardening
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Fig. 2. Angular variation of the leading order in-plane stress and displacement components for
n = 5, 10 and 50.

exponent n. In the following section, we show that, for a weakly non-linear material (say
n = I +f, f = small), the difference between t and s is of order f2, i.e. t = S+0(f2) near
n = I (see also Fig. 6).

Next, we consider the crack tip "mode-mix parameter" M~O), which is defined as (Shih,
1974)

2 (. aoo ) 2 (aw)M~O) = - tan- 1 lIm - = - tan- 1 --;;oj" .
11: r-O arB 0=0 11: a~o 0=0

(14)

The possible values of M~O) range from 0 (mode-II) to ± I (mode-I). In order to study the
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Fig. 3. Slip line solution.

nature of the second term in the stress expansion, we introduce the second-order mode­
mix M~l) defined as

2
(

~(l»)
(I) _ -I aM

M p --tan ~ .
1t ar9 9= 0

(15)

The variation of the determined M~O) and M~') with the hardening exponent n is plotted in
Fig. 7. We observe that the values of M~O) are close to 1, indicating that the crack opening
mode is the dominant mode ahead of the crack tip. The second-order mode-mix M~I) takes
values between 0 and -1, and has a substantial mode-II component, especially for values
of n near n = 1.

The results shown in Figs 6 and 7 make it clear that the first and second terms in
the stress expansion (11) branch from the mode-I and mode-II linear elastic solutions,

3.20
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2.90

2.60

2.30

2.00
10 20 30 40 50

n
Fig. 4. Variation of In with the hardening exponent n.
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Fig. 5. Angular variation of the second order in-plane stress and displacement components for
n=5,IOand50.

respectively. A detailed discussion of this topic is given in the following section, where the
nature of the asymptotic solution is analysed in detail for values of n near n = 1.

Summarizing, we mention that the mathematical limit of the ratio ((JOO/(JrO)O= 0 as r ~
ois completely defined by the hardening exponent n. It is important to realize, however,
that for small (but finite) values of r, the second term in the stress expansion becomes
important and does affect the near tip mode-mix. Put in other words, for all practical cases,
the value of the ratio ((JOO/(JrO)O~Onear the crack tip depends on both Jand Q, which (J, Q)
depend, in turn, on the geometry under consideration and the type of applied loading.

It should be also noted that for the two extreme cases of linear elasticity (n = I) and
perfect plasticity (n = 00) the stress exponents sand t are equal, i.e.
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Table I.

n

703

2
3
4
5
6
7
8
9

10
II
12
13
14
15
16
17
18
19
20

-0.312
-0.212
-0.152
-0.113
-0.087
-0.068
-0.055
-0.045
-0.037
-0.031
-0.026
-0.022
-0.019
-0.016
-0.012
-0.0\2
-0.011
-0.009
-0.008

s= t= -1/2 for n= 1,

s=t=O for n=r:IJ.

(16)

(17)

This finding is consistent with the known linear elastic solution and the families of slip line
fields of Quanxin Guo and Keer (1990) which admit an arbitrary mode-mix at the crack
tip.

We conclude this section by mentioning that the asymptotic stress expansion (11)
implies the following definition for Q:

lim Bij = Q = constant for all i,j and e.
r~O

(18)

(19)

0.00

-0.10

-0.20

-0.30

-0.40

-0.50
10 30 40 50

n
Fig. 6. Variation of the stress exponents sand t with the hardening exponent n.
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Fig. 7. Variation of the mode-mix parameter Mp with the hardening exponent n.

The predictions of the developed asymptotic solutions are compared with the results
of detailed finite element calculations in Section 5.

4. ASYMPTOTIC SOLUTION VIA A PERTURBATION OF n ABOUT n = 1

In this section we discuss the behavior of the asymptotic solution near n = l.
The angular functions ii(O), 17(0), ii(l) and 17(1) introduced in eqns (II) and (12) above,

are determined from the solution of the following two eigenvalue problems (Sharma and
Aravas,1991a).

For the leading-order problem we have

d8(O)
( + I) -(0) _ -(0) + _r_O = 0

S (1rr (106 dO '

d -(0)
(106 ( 2) -(0) - 0d"O + S+ (1rO - ,

I (dU~O) + -(0») 1 -(O)n- 1 -(0) - 02: d"O snUe - 2(1. (1rO - ,

with boundary conditions

and

For next order, the problem is given by

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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d-(I) [ -(0)-(1) ]
u(I)+~_"a(O)n-1 s(I)+"(n_l)sk/(Jk/ S(O) =0

r de 2 e 00 2 a~0)2 M ,

1[d -(I) ] [ -(0) -(I) ]_ ~+(s(n-l)+t)u(l) _"a(O)n-l a(I)+"(n_l)sk/(Jk/ 0'(0) =02 de 0 2 e rO 2 a~0) 2 rlJ ,

with boundary conditions

and

705

(27)

(28)

(29)

(30)

(31)

(32)

(33)

The only out-of-plane non-zero stress component (Jzz is determined from the plane
strain condition (zz = 0, which implies that a~~) = (a~~) +a~g»/2 and a~1) = (a~;> +aW)/2.

An obvious solution to the second-order eigenvalue problem (27)-(33) is

(34)

where c is an arbitrary constant. This solution, however, is not acceptable, since it violates
the condition s < t.

In the following, we study the plane strain version of the two eigenvalue problems
given above, near n = 1. Such an analysis for the leading-order problem (20)-(26) has been
presented by Champion and Atkinson (1991) who formulated the problem in terms of a
displacement potential. The solution presented in Section 4.1 parallels that of Champion
and Atkinson and is used in Section 4.2 for the analysis of the second-order problem (27)­
(33).

4.1. The leading-order problem
Substituting n = 1+( in eqns (20)-(24) and expanding in (, we find

dx(e)de - F(s) . x(e) = (G(x, s)· x(e),

where

x = {ufO) 17(0) 0'(0) a(O)}
r , () , ()o, rO ,

G = G(O) +0(8),

(35)

(36)

(37)

and (F, G(O» are two 4 x 4 matrices which are given in Appendix A. The a~~) stress compon­
ent, which is not included in x, is determined from the algebraic equation (22).

Equation (35) can be rewritten in an integral equation form as
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x(8) = 'I'(8,S)''I'-1(0,S)'x(0)+£'I'(8,s)'r'I'(cP,s)'G(x(cP),s)'x(cP)dcP, (38)

where 'I' is a 4 x 4 matrix defined in Appendix A.
We let x(O) = {O, 0, Ai> Au}, so that the boundary conditions on 8 = 0 [eqns (25)] are

satisfied automatically.
We attempt an asymptotic expansion of the solution in the form

(39)

Substituting the expansion (39) together with

(40)

into (38) and collecting terms having like powers of £, we find

(41)

(I) _~~ • -I •x (8) - 4 as ['1'(8, s) 'I' (0, s)L~ - 1/2 x(O)

+'1'(8, -~).r'I'-I(cP, -~)'G(O)(x(O)(cP), -~)·x(O)(cP)dcP· (42)

The functions x(Ol(8) and x(ll(8) are evaluated using Mathematica (Wolfram, 1991). The
leading order solution x(Ol(8) (6 = 0, n = 1) is of the form (see Appendix A)

(43)

and corresponds to an incompressible linear elastic material, where AI and Au are arbitrary
constants, and x(8) and Xu (8) are the standard mode-I and mode-II solutions, respectively.

Next, we consider the remaining boundary conditions on 8 = 1t [eqns (26)]. It can be
readily shown that the boundary conditions (26) are automatically satisfied to 0(1), i.e.
x~Ol(1t) = x~O)(1t) = 0 for all Al and All' Satisfaction of (26) to order £ requires that

which leads to

-4 Au +31 (All) = 0
Al 1 Al '

(AU)8+312 ~ = 0,

(44)

(45)

(46)

where the functions II and 12 are defined in Appendix A. The last two equations are solved
numerically for AulAI' It is found that they have the common solution AulAI = O. Equation
(43) reduces now to x(Ol(8) = AIXI(8), i.e. the leading order solution branches from the
mode-I linear elastic solution.

4.2. The second-order problem
Substituting n = 1+£ and x(8) = x(O)(8)+£X(ll(8)+0(£2) into eqns (27)-(31) and

expanding in £, we find



Solutions for interfacial cracks 707

d~~) _ F(t) •y(O) = £(;(0, t) . y(O), (47)

where

y = {~I),ii~I),a~>,a~)}, (48)

(; = (;(0)+£(;(1)+0(£2), (49)

F is the matrix defined in Section 4.1, and «(;(0), (;( I» are two 4 x 4 matrices which are given
in Appendix B. The a~;) stress component, which is not included in y, is determined from
the algebraic equation (29).

Equation (47) can be written in the form:

yeO) = '1'(0, t) • '1'- 1(0, t) •y(O) +£'1'(0, t) •r'1'(<f>, t) . (;(<f>, t) •y(<f» d<f>, (50)

where 'I' is the matrix introduced in Section 4.1.
We write yeO) = {O,O, BhBu}, so that the boundary conditions on 0 =0 are satisfied

automatically.
We attempt an asymptotic expansion of the solution in the form

(51)

and

(52)

where C and D are constants to be determined.
Substituting the expansions (51), (52), (49) and (40) into (50) and collecting terms

having like powers of e, we find

y(O)(O) = "(0, -!).,,-I(O, -!)'y(O), (53)

y(I)(O) = {C~['I'(O,t)''I'-I(O,t)]} 'y(O)at 1= - 1/2

+"(0, -!).r'I'-I(<f>, -!).(;(O)(<f>, -!)'y(O)(<f»d<f>, (54)

{ a a2
}y(2)(O) = D;;- ['1'(0, t)· '1'- 1(0, t)] +!C2;;2 ['1'(0, t)·"- 1(0, t)] •y(O)

ut ut 1= 1/2

+C {~ ['1'(0, t)· (0 '1'- 1(<f>, t) • (;(0)(<f>, t) •yeo) (<f» d<f>J}
at Jo 1=-1/2

Again, y(O)(O) and y(l)(O) are evaluated using Mathematica and are used for the deter­
mination ofy(2)(O) (see Appendix B). The leading order solution y(O)(O) (£ = 0, n = 1) is of
the form
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(56)

where B, and BII are arbitrary constants, and XI (8) and XII (8) are the standard mode-I and
mode-II functions introduced in Section 4.1.

We consider next the remaining boundary conditions on 8 = n [eqns (26)]. The bound­
ary conditions (26) are automatically satisfied to 0(1). Satisfaction of (26) to order ( and
(2 requires that

(57)

and

(58)

Using Mathematica, we can readily show that (57) and (54) lead to

(59)

with the only non-trivial solution

(60)

Similarly, (58) and (55) imply that

(D+ 16)BII = O.

There are two possible solutions to the last two equations:

D = - ~ and BII = 0,

and

D = - 16 and B] = O.

(61)

(62)

(63)

(64)

The solution (63) corresponds to the obvious solution (34) and must be rejected; therefore,
we are left with (64). Equation (56) reduces now to y(Ol(8) = BU x lI (8), i.e. the second order
asymptotic solution branches from the mode-II linear elastic solution.

Summarizing, we mention that

and All = 0, (65)

(66)

i.e. t = S+0(f2) near n = 1, and a(O), a(l) on the right-hand side of (11) branch from the
mode-I and mode-II linear elastic solutions respectively.
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-0.40

-0.50
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Fig. 8. Variation of sand t near n = I. tis given by eqn (66).

Figure 8 shows the variation of sand t near n = I. The open circles in that figure are
the results of the numerical solution of the eigenvalue problem (27)-(33), and the curve
marked tis the variation of t as predicted by the asymptotic solution above to within terms
of 0(£3), Le. t = -1/2+£/4-£2/16 [see (66) above]. The predictions of the asymptotic
solution (66) agree very well with the results of the numerical solution in the region
I ~ n ~ 2.

We conclude this section by mentioning that the corresponding linear elastic asymptotic
solution is written in terms of the complex stress intensity factor K = K1+iK2 = IKI e i4>,

and the near-tip stresses can be characterized by the two scalar quantities K 1 and K 2 (or
IKI and 4». Therefore, J and Q in the asymptotic expansion (II) can be viewed as the non­
linear counterparts of K 1 and K 2 (or IKI and 4».

5. THE LINEAR ELASTIC SUBSTRATE

In this section, we show that the two-term asymptotic solution developed in Section 3
is still valid when the rigid substrate is replaced by a linear elastic material which is perfectly
bonded to the non-linear material (Fig. 9).

E,v,n,uo,O<fO

~l".

Fig. 9. Crack along the interface between a power-law hardening material and a linear elastic
substrate.
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Referring to Fig. 9, we write the boundary conditions for the asymptotic problem as

aee=are=O on 8=±n.

The continuity conditions along the interface are

[aee] = [are] = 0, [u] = 0 on 8 = 0,

where [ ] denotes jumps of the functions across the interface.
We assume that the near tip stress expansion is of the form

(67)

(68)

wheres= -lj(n+l),ands<t<···.
The corresponding form of the near tip displacement field is

u(r,8) = r,"+l u (0)(8)+rs<n- I)+I+l u (I)(8)+· .. , 0 ~ 8 ~ n, as r-+O, (70)

provided that t < (n-2)j(n+ l) (Sharma and Aravas, 199Ia).
The displacement continuity condition (68b) now becomes

[rsn+1u(0)(0)+r"(n-I)+I+IU(I)(0)+' "]-[rs+1u(0)(0)+"'] = 0 as r-+O. (72)

Taking into accountthat s = - Ij(n+ 1) and t < (n- 2)j(n+ l), we conclude that, to leading
and second order, the displacement continuity condition (72) implies that

(73)

Summarizing, we mention that the asymptotic boundary conditions in the region
o~ e~ n are

(74)

and

(75)

which shows that the two-term asymptotic solution developed in Section 3 is still valid in
the region 0 ~ 8 ~ n, i.e. the effects of the linear elastic substrate enter the asymptotic
solution in the non-linear material to third order or higher.

Next, we briefly discuss the case in which the substrate is made of a power-law
hardening material with a hardening exponent ns < n. In that case, using the results of
Sharma and Aravas (1991 b), we can readily conclude that the two-term asymptotic solution
developed in Section 3 is still valid in the region 0 ~ 8 ~ n, provided that

ns < n-l-t(n+ 1),

where the value of t is given in terms of n in Table l.

(76)

6. FINITE ELEMENT SOLUTIONS

In order to verify the asymptotic solutions developed in the previous sections, we carry
out finite element calculations under small- as well as large-scale yielding conditions.
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The finite element model is constructed using 9-node isoparametric elements with 3 x 3
Gauss integration. To avoid numerical difficulties, which arise from the nearly incom­
pressible deformation of the material, the so-called B-bar method is used (Hughes, 1980,
1987), i.e. the deviatoric part of the strain tensor is calculated at the 3 x 3 Gauss points
whereas the volumetric part is evaluated at the 2 x 2 Gauss points and then interpolated/
extrapolated to the 3 x 3 Gauss points.

Infinitesimal strains are assumed in the calculations.
The ABAQUS general purpose finite element program (Hibbitt, 1984) is used for the

computations. It should be mentioned that the 9-node element is not included in the
ABAQUS "element library" ; however, the code provides a general interface so that a new
element can be introduced as a "user subroutine". The constitutive behavior is part of the
element definition.

6.1. Small scale yielding deformation plasticity solutions
We consider the crack-tip region of a plane strain crack lying along the interface of an

elastoplastic medium and a rigid substrate and use a boundary layer formulation to study
the near-tip elastoplastic fields. The linear elastic asymptotic displacement field is applied
on a semicircular boundary remote from the tip. Perfect bonding is assumed ahead of the
crack and the crack face is kept traction-free. A semi-circular arrangement of wedge-shaped
(collapsed) elements is used around the crack tip and all crack-tip nodes are tied together.
The deformation plasticity model discussed in Section 3 was implemented through the user
interface. The material constants used in the calculations are £/ao = 300, v = 0.3, n = 5
and a = I. The radial length of each of the wedge-shaped elements is 10- 10 times the
outermost radius of the finite element mesh.

Dimensional analysis shows that the solution of the problem must be of the form (Shih
and Asaro, 1989)

(77)

where F is a dimensionless tensor-valued function, K is the complex stress intensity factor
(Rice, 1988), the overbar denotes complex conjugate,

(78)

q> is the phase angle of K, and e = [1/(2n)] In (3 -4v). The function F has a periodicity with
respect to ~ of the form (Shih and Asaro, 1989)

F(~+mn) = (-l)mF(~), m = integer. (79)

In order to obtain a better understanding of the nature of the parameter ~, we make
a connection with a problem of a plane strain Griffith crack of length 2a loaded as shown
in Fig. 10. In that case (Rice, 1988)

K = IKI eicp
, IKI = T~JI +4e 2

, q> = t/J+p-e In (2a), (80)

where p = tan - J (2e), t/J is the far-field loading angle as shown in Fig. 10, and T is the
magnitude of the applied traction at infinity. The ~-parameternow becomes

$AS 3O:5-H
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00

U~'.~.....! T

: 00
: u zy

}

\
~

Fig. 10. Griffith crack at the interface of a deformable medium and a rigid substrate.

(81)

In view of the above definition of ~ and the periodicity (79), the stresses for t/J = - 900 are
the opposite of those for t/J = 90° at the same load level under small scale yielding conditions.

For the case of the Griffith crack and for applied tractions T/(Jo in the range
10- 2-10- I (small scale yielding) the corresponding values of ~ are

~ = -1.417 to -0.986 for t/J = -45°,

~ = -0.631 to -0.200 for t/J = 0°,

~ = -0.154 to 0.585 for t/J = 45°,

and

~= 0.940 to 1.370 for t/J = 90°.

The stress intensity factor used in the boundary conditions of the finite element
calculations is determined using eqn (80), so that connection with the Griffith crack problem
can be made. Four sets of calculations were carried out, with values of t/J = 0°, ±45°, and
90°; in all cases, the calculations were terminated at the load level T/(Jo = 0.222. At the end
of the calculations, the maximum extent of the plastic zone, which is defined as the region
where (Je ~ (J 0, is of order 10- 2Rout, where Rout is the outermost radius of the finite element
mesh.

All results presented in the following are for the final load level T/(Jo = 0.222. At this
load level and for loading angles t/J = -45°,0°,45°, 90° the values of ~ are ~ = -0.837,
-0.051,0.734,1.519 respectively.

Figure II shows the angular variation of the normalized in-plane stress components
for the four cases analysed at the radial distance r = 1.1 x 10- 7KK/(J~. In Fig. II, and in
all subsequent figures, the open circles indicate the results of the finite element calculations,
curve I is the first term in stress expansion (II), and curve II is the sum of the first two
terms in (II). The method used for the calculation of the constant Q is discussed later in
this section. For the case of t/J = 0° R = -0.051) the asymptotic solution agrees well with
the finite element solution and inclusion of the second term in (II) does improve the
prediction of the asymptotic solution. For the values of t/J = -45°, 45°, and 90°
(~ = -0.837,0.734, and 1.519), however, the agreement is not always good, especially in
the region ahead of the crack (0° ~ (J ~ 60°), where higher order terms in the stress expan­
sion (II) appear to have an important contribution. Figure II makes it clear that the region
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Fig. II. Angular variation of the normalized in-plane stress components aij = qui {J/(1X8ol n) I/(n+ O}
for'" = _45°, 0°, 45° and 90° (.; = -0.837, -0.051, 0.734 and 1.519) at a radial distance

r = I.I x 10- 7KK/q~.

of dominance of the asymptotic solution depends strongly on () as well as the value of e,
which depends, in tum, on the geometry considered and the magnitude and direction of
the remote loading.

Figure 12 shows the radial variation of the in-plane stress components along the radial
line () = 86.25° for the four c~ses analysed. The region of dominance of the asymptotic
solution is shown again to be a strong function of the type of remote loading and (). For
example, when'" == 0° (e == -0.051), thuadial distance over which the difference between
the asymptotic and the finite element solution is less than 10% ranges from O.Olr!:.ax along
() = 90° to 1O- 7r!:.ax along () = 0°, where r!:.ax is the maximum extent of the plastic zone.
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The values of Q used in Figs 11 and 12 are determined using eqn (19) together with
the finite element solutions. Figure 13 shows the variation of Boo for different values of e
at the final load level for the four cases analysed. The other two in-plane components Brr

and Bro show similar variations. According to eqn (19), all Bij components should approach
the constant Q value as r -+ O. Figure 13 shows that for t/J = -45°, Boo approaches a
constant as r -+ 0 for e> 25°, which suggests that the region of dominance of the two-term
asymptotic solution is vanishingly small in the angular region 0° < e< 25°. For the case
of t/J = 0°, Q does approach a constant as r -+ 0 for all values of e. For t/J = 45°, the limit
of Boo as r -+ 0 depends on e [see Fig. 13(c)], which shows that the region of dominance
shrinks to zero in this case. Finally, when t/J = 90°, Boo approaches a constant value as
r -+ 0 only when e> 85°, implying that the region of dominance of the two-term asymptotic
solution is vanishingly small in the angular region 0° < e< 85°.
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Fig. 12. Radial variation of the normalized in-plane stress components for if! = -45°, 0°, 45° and
90° (~ = -0.837, -0.051, 0.734 and 1.519), along (J = 86.2SO.

Notice that for the case of ljJ = 90°, the finite element solution indicates that the crack
face penetrates the rigid substrate, Le. Un > 0 on () = n near the crack tip. However, the
asymptotic solutions presented in Section 3 are normalized so that ii~O)(n) < O. Therefore,
for the case of ljJ = 90°, we use the opposite of the asymptotic solution shown in Fig. 2 for
n = 5.

The values of Q used in Figs 11 and 12 are Q = 10, 6, -75 and -18 for ljJ = -45°,
0°,45° and 90°, respectively.

6.2. Large scale yielding flow theory solutions
We consider a plane strain edge crack of length a along the interface between an

elastic-plastic medium and a rigid substrate. A remote tensile load (f00 is applied as shown
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Fig. 12. Continued.

in Fig. 14. Perfect bonding is assumed ahead of the crack and the crack face is kept traction­
free. The near-tip mesh design is similar to that described in the previous section and the
radial size of the crack tip elements is 10- 5a.

An incremental (flow) plasticity theory is used in this set of calculations. The elastic­
plastic medium is assumed to obey the von Mises yield criterion with associated flow rule
and the constitutive equation is of the form

(82)

where
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Fig. 14. Schematic representation of shallow-cracked bimaterial specimen.
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(

(-p )1/n(J" = 1+-- ,
ao 0((0

(83)

a 0 is the uniaxial yield stress of the material, fo = ao/E is the yield strain, a superposed dot
denotes material time derivative, and £P is the plastic part of the strain rate tensor. The
material constants used in the calculations are E/ao = 300, v = 0.3, n = 5 and 0( = 1.

The results presented in the following are for the final load level a OO = 1.2ao.
Figure 15 shows the radial variation of the in-plane stress components along the radial

lines () = 3.75° and 41.25°. Figure 16 depicts the angular variation of the same stress
components at two different radii r = 3.2 x 1O-4a = O.Oll/ao and r = 0.05a = 1.8i/ao.
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Fig. 15. Radial variation of the in-plane stress components along the radial lines (J = 3.75" and
41.25°.
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Fig. 16. Angular variation of the in-plane stress components at two different radii r = 3.2 x 1Q-4a
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The value of Q used in Figs 15 and 16 is Q = - 27 and is determined using eqn (19)
together with the finite element solution.

Figures 15 and 16 show that the two-term asymptotic expansion (11) agrees well with
the predictions of the finite element solution. The region of dominance of the asymptotic
solution appears to be again a function of e.

7. INTERFACIAL CREEP FRACTURE

In this section, we discuss briefly the use of the developed asymptotic solution in
problems of interfacial creep fracture.
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Referring to the interfacial crack tip of Fig. 1, we assume that the constitutive equation
of the deformable medium is of the form

The asymptotic solution can be now written as (Riedel and Rice, 1980)

a(r e T) (C(T) )1 /(.+ I) ( r )1" = -.-- a(O)(e)+Q(T) . a(I)(e)+···,
0"0 £oO"o/.r C(T)/O"o

where Tis time, (a(O),a(I),/., t) are the same as those ofeqn (11),

and nl = cos e, nz = sin e.

(84)

(85)

(86)

8. CLOSURE

In closing, we mention that the two-term asymptotic elastoplastic solution developed
herein provides a suitable basis for the development of a two-parameter (J - Q) fracture
criterion. It should be also noted that in order to establish a sound fracture criterion, one
has to make sure that the asymptotic solution, on which the fracture criterion is based,
provides an accurate description of the near-tip stresses over distances larger than the
fracture process zone (Hutchinson, 1983). For the case of the shallow edge crack, we find
that the asymptotic solution provides an accurate description of the near tip stresses over
radial distances of the order r ~ 2J/0"0. It is important to note, however, that the region of
dominance of the asymptotic solution depends, in general, on the geometry as well as the
type of loading of the structure considered. Therefore, a careful evaluation of the region of
dominance of the asymptotic solution is necessary, before a specific specimen geometry is
used for the determination of the interfacial fracture toughness in ductile materials.
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APPENDIX A

The matrix F(s) used in eqn (35) is given by

(

0

-(s+2)
F(s) =

- (4/3)~S+ 1)2

-s 0

o 0

o 0

o -s

The matrix G(x,s) on the right-hand side of (35) is written as G(x,s) = G(O)(x,S)+O(E), where

o
-s

G(OJ(x,s) = (

(4/3)(s+ I)[(S: I) In a~O) -s]

-s 0 31n a~o»)
000

000 .

000

The columns of matrix 'I' are the fundamental solutions of the homogeneous version of equation (35), i.e.

(

a sin (sO)

b cos (sO)
'1'(0, s) =

-c sin (sO)

cos (sO)

-a cos (sO)

b sin (sO)

c cos (sO)

sin (sO)

cos [(2+s)8]

-sin [(2+s)8]

-dcos [(2+s)0]

-dsin[(2+s)8]

sin [(2+s)8] )
cos [(2+s)8]

-dsin[(2+s)8] ,

dcos [(2+s)8]

where a = 1.5/(1 +s), b = ac, C = (2+s)/s and d = I/a.
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The solution x(OJ is given by

(0) A, ( . 9 . 39) All (9 39)XI =- -3sm-+9sm- +- 3cos--3cos-
4 2 24 2 2'

o A, ( 9 39) All ( . 9 . 39)x~) =- -9cos-+9cos- +- -9sm-+3sm-
4 2 24 2 2'

(0) A, ( . 9 . 39) All ( 9 39)Xl =- -3sm--3sm- +- 3cos-+cos-
4 2 24 2 2'

(0) _ A( (9 39) All (. 9 . 39)
X4 -4" cos2:+ 3 cosT +4 sm2:+ sm T .

Next, we write

where 1:(0) is found using x~o) and x~o), and define

I:~O) = (18~? 8~;"» 1/2,

where S(O) is the deviatoric part of 1:(0).
Finally, the functions II and 12 in (45) and (46) are defined as

II = l" sin 9 [~I: (I +3 cos 29) +sin 29J In [~0)(9)Jd9,

and

12 = L' [~I,( (7 cos 9+9 cos 39)+( -sin 9+3 sin 39)J In [I:~0)(9)Jd9.

APPENDIX B

In order to simplify the expressions given below, we write

where 1:(0) and 1:(1) are known from the solution x(O) and x(l). Also, we define

and
3 8

(018(1)
I:( I) = _-.!!..-!L

, 2 I:~O) ,

where (S(O),S(I» are the deviatoric parts of (1:(0),1:(1».
The matrix (;(9, t) on the right-hand side of (47) is written as (;(9, t) = (;(0)(9, t) + ((;< (1(9, t) + 0«( 2), with

(

6(t+ I)X(9)

1/2
(;(0)(9, t) = 0

(2/3)(t+ 1)[2(t+ I)Z(8)+ I]

and

where

(

3X(8)[2(t+I)Y(8)-I]

-1/4
(;(1)(8, t) = 0

- (1/3)(t+ 1)[1 +2Z(9)-4(t+ I)P(8)]

-1/4

o
o
o

~ 3~8) )

o 0 •

o 6(t+I)X(9)Y(8)

8(0)2

Z = m+3 I:i~'2'
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m = In~O).

The solution y(O) is identical to x(O) with (AI. An) replaced by (B" Bn). Finally. the solution y(1) is given by

y\l) = ~BI sin ~ [I-COS 0+(1 +3 cos 0) In (3 sin2~)J+~BII sin ~ sin 0 In (3 sin2~).

y~1) = iB,cos ~ sin2~[4-31n (3 sin2nJ+iBII sin3 ~[I-In (3 sin2~)1
y\1) = 1B. sin~coS2~[ -1+6In(cos~)J-BII cos3 ~ In(cos~).

y~1) = 1B. cos~[ I-cos 0+(1-3 cos 0) In (cos~)J-~BJI sin o cos ~[I +21n (cos~)J
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